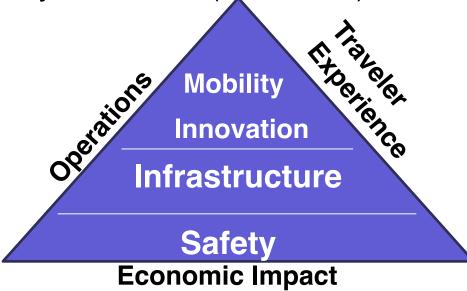


FTA's Strategic Transit Automation Research (STAR)

November, 2018


Vincent Valdes
Associate Administrator
Office of Research, Demonstration and Innovation

Federal Public Transportation Law (49 U.S.C. §5312) Statutory Authority

- Purpose: To advance innovative public transportation research and development
- Eligible activities promote "pipeline approach" Innovation and Development; Demonstration & Deployment; Project Evaluation

Funding: Highway Trust Fund (\$28M total)

Public Transit is Being Disrupted

- Traveler expectations have changed
 - Smartphone payment, real-time information, 24/7 desire to be "connected", point-to-point convenience
- Private sector now in the market public transportation as business destination
- Bus technologies electric drive and "drive-by-wire" capabilities require new maintenance models
- New technologies impacting operations
 - Worker track identification (safety)
 - Real-time surveillance (security)
 - Telemetrics (asset management)
- Transit Automation could expand public transit marketshare

Disruption Provides Opportunities

- New public transit models can enhance economic development (TOD, value capture)
- Transit is cost-effective for riders
- Rider usage data is revenue
- Rail and bikeshare use growing
- Public/Private sector partnerships can increase access to rides
- Low and No Emission Bus market forecasting 400% growth
- Number of public transportation vehicles powered solely by electric battery has increased 210% since 2010 (NTD)
- Transit automation could drive even greater economic growth 2 to 3% market share today; tomorrow?

Goods Delivery
Services

Vehicles (including shared-use and accessible)

Transportation Infrastructure & Facilities

SUPPLY

MOBILITY INNOVATION

Complete Trips for All

Travelers

(including travelers with disabilities, older adults and other underserved communities)

> Goods (including consumers, etailers, manufacturers

retailers, manufacturers, distributors, etc.)

DEMAND

Federal, State & Local Government

Public & Private Transportation Providers

Transportation Managers

Travelers & Consumers

Banks & Insurance

Employers

STAKEHOLDERS

Emerging Technologies

Business Models & Partnerships

Mobility Data Analytics

Payment Platforms

Built Environment

Policies, Regulations, & Standards

ENABLERS

Public Transit Market Conditions – Supply

- Private sector competition ("Coopetition"?)
- Labor shortages
- Increasing focus on safety
- Sharing, managing, optimizing resources
- Operating and capital expenses rising
- Off peak travel increasing
- Declining transit ridership
- IoT, Smart Communities, and Big Dat

Public Transit Market Conditions - Demand

- Increasing local transportation options
- Shifting traveler preferences and information expectations
- Expanding service area and time travel needs
- Trip planning across states/regions/modes
- Integration of new technologies
- Accessibility
- More need for rural options

Automation Benefits in Public Transportation

- Improve safety
- Increase efficiency and productivity
- Potentially reduce costs
- Increase traveler convenience and comfort through improved service frequency, flexibility and reliability
- Expand service hours and area
- Increase overall customer satisfaction
- Adapt to change embrace innovation

Transit Automation Research Goals

- Conduct enabling research to achieve safe and effective transit automation deployments
- Identify and resolve barriers to deployment of transit automation
- Build awareness to socialize automation for transit stakeholder community
- Demonstrate market-ready technologies in real-world settings
- Leverage technologies from other sectors to move transit automation industry forward

STAR Plan Scope

- Transit bus operations
 - "Bus" is defined broadly
 - Passenger capacities
 - Traditional and novel vehicle designs
 - Lessons learned from automation in rail, lightduty vehicles, commercial vehicles, and aviation considered
- Full range of automation (SAE Levels 1-5)
 - Does not include driver assistance systems without an automation aspect (e.g., driver warnings and alerts)

STAR Plan Development Process

Engage stakeholders

• Interviews, workshops, and presentations

dentify potential scenarios (use cases)

Identify, analyze, and prioritize use case scenarios for automating transit bus operations

Major Project Tasks

- Literature Review
- Risk/Barrier Assessment
- Stakeholder Engagement
- Benefit-Cost Analysis
- Research Plan

Develop a plan

•For future transit automation development and demonstration projects

Transit Automation Scenarios (Use Cases)

- Smooth Acceleration and Deceleration
- Automatic Emergency Braking and Pedestrian Collision Avoidance
- Curb Avoidance
- Precision Docking
- Narrow Lane/Shoulder Operations
- Platooning
- Circulator Bus Service
- Feeder Bus Service
- Precision Movement for Fueling, Service Bays, and Bus Wash
- Automated Parking and Recall
- Automated First/Last-mile
- Automated ADA Paratransit
- On-Demand Shared Ride
- Automated Bus Rapid Transit

FEDERAL TRANSIT ADMINISTRATION

Transit Bus Advanced Driver Assistance System (ADAS)

Technology Package 1

Automated Shuttle Technology Package 2

Maintenance, Yard, Parking Operations Technology Package 3

Mobility-on-Demand (MOD) Service

Technology Package 4

Automated Bus Rapid Transit Technology Package 5

Automation Research Activities

Enabling Research

- Automation Policy Review
- Applications of Light and Commercial Vehicle Automation Technology
- User Acceptance Study and Human Factors Research
- Market Analysis for Transit Bus Automation
- Hazard and Safety Analysis of Automated Transit Bus Applications (ITS JPOfunded)

Integrated Demonstrations

- Test Facility Requirements
- Solicitation for Demo 1: Automated ADAS
- Solicitation for Demo 2: Automated Shuttles
- Demonstration Evaluation Guidance
- Transit Industry
 Automation R&D
 Solicitation

Strategic Partnerships

- Valley Metro Automation Pilot
- Access Services LA (potential)

- Las Vegas (potential)
- Jacksonville (potential)

These projects will leverage pilots and demonstrations initiated by external actors (manufacturers, suppliers, transit agencies, cities) and are opportunistic in nature.

Stakeholder Engagement, Knowledge Transfer, and Technical Assistance

Integrated Mobility Challenges

- Mobility on Demand: The challenge travelers need more transportation options that are easier to access and use.
- Multimodal Payment: The challenge different payments systems across U.S. transportation modes
- Transit Automation: The challenge the safe, effective and thoughtful adoption and integration of this new technology

Mobility Innovation Research

- Integrated Mobility Initiative (IMI)
- Objective: *Integrated* Demonstrations
 - Mobility on Demand Sandbox (Round 2)
 - Multimodal Integrated Payment Systems
 - Transit Automation

Source: Shared Use Mobility Center

Cross-Cutting Research Issues

- Institutional governance and culture/business practices
- Workforce/Training
- Policy
- Data
- Automation/Technology
- Standards/Regulations

